Fixed Points of Commuting Holomorphic Maps without Boundary Regularity

نویسندگان

  • FILIPPO BRACCI
  • F. BRACCI
چکیده

We identify a class of domains of C in which any two commuting holomorphic self-maps have a common fixed point.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some common fixed point theorems for Gregus type mappings

In this paper, sufficient conditions for the existence of common fixed points for a compatible pair of self maps of Gregustype in the framework of convex metric spaces have been obtained. Also, established the existence of common fixed points for a pair of compatible mappings of type (B) and consequently for compatible mappings of type (A). The proved results generalize and extend some of the w...

متن کامل

Boundaries of Siegel disks: numerical studies of their dynamics and regularity.

Siegel disks are domains around fixed points of holomorphic maps in which the maps are locally linearizable (i.e., become a rotation under an appropriate change of coordinates which is analytic in a neighborhood of the origin). The dynamical behavior of the iterates of the map on the boundary of the Siegel disk exhibits strong scaling properties which have been intensively studied in the physic...

متن کامل

für Mathematik in den Naturwissenschaften Leipzig Regularity and blow - up analysis for

If u ∈ H(M,N) is a weakly J-holomorphic map from a compact without boundary almost hermitian manifold (M, j, g) into another compact without boundary almost hermitian manifold (N, J, h). Then it is smooth near any point x where Du has vanishing Morrey norm M2,2m−2, with 2m =dim(M). Hence H2m−2measure of the singular set for a stationary J-holomorphic map is zero. Blow-up analysis and the energy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004